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Manual active learning for salt interpretation: an empirical study to avoid forgetting during 

incremental trainings 

 

Introduction 

 

Salt bodies play a key role in different geoscience applications. They can act as an efficient sealing 

preventing hydrocarbons to leak from underlying reservoir or be used as caverns for hydrogen, carbon 

dioxide or methane storage Yet, their complex geometry makes the salt delineation accuracy difficult 

which increases uncertainties and risks. Deep learning models unleashed significant advances in seismic 

interpretation, specifically for salt segmentation. However, these models rely on big training sets which 

is very demanding in terms of labelling effort. In seismic applications, the labelling is a challenging and 

tedious task due to the broad areas covered by the seismic data and requires expert knowledge. 

Consequently, finding solutions to limit the labelling effort is a priority to accelerate workflows and to 

optimize the human resources. The technique of active learning can help in reaching these goals. It 

consists in selecting the best data to label in order to improve the model performance based on an 

iterative approach during which, at each step, unlabeled data are chosen to be labelled and used to train 

the model. This process is repeated until the model reaches acceptable performances. 

 

Objective 

 

In this paper, we focus on defining an active learning approach for the segmentation of salt bodies on 

seismic data. The aim of this paper is to propose an optimal workflow and set of hyperparameters for 

which a model can learn incrementally new labels without forgetting the previously learned salt 

geometries. Ideally, we would like to find a method which enables to (i) incrementally learn without 

forgetting, (ii) by using a model which can be trained on a mid-range laptop GPU, (iii) with training 

phases which must be not too long in order to ease the interactivity.   

 

Review of active learning methods 

 

There are different strategies in active learning to choose the data samples to label. They vary based on 

the level of information the new labels can bring to the model when it is trained on. These strategies 

can be divided into two categories: a quantitative and a qualitative approach. The first category is based 

on the quantitative evaluation of the informativeness of the data which allows an automatic selection of 

the unlabeled data to label. On the other hand, the second category is based on a qualitative evaluation 

where a human decides which data to label in order to improve the model performance by visually 

screening the predictions. The first category mainly relies on model uncertainty and has been applied 

in numerous fields. The aim is to select data samples for which the prediction is the most uncertain. Gal 

et al. (2017) introduced the Monte Carlo dropout at inference time to build prediction probabilities. 

Beluch et al. (2018) used an ensemble-based approach to compute the prediction probabilities. For the 

works mentioned above, the models have been retrained from scratch after each iteration by 

concatenating the training set from previous iterations with the new labeled data. This implies a longer 

training time as the number of iterations increases to the expense of the desired interactive workflow. 

Finally, adopting such a quantitative approach for the seismic segmentation requires the computation 

of the prediction probability for each tile of the entire seismic volume for each iteration of the active 

learning process. This might be unpractical in industrial context with big seismic volumes. For the 

application of seismic segmentation, to the best of our knowledge, only Di et al. (2022) applied a 

combination of deep learning and active learning with an automatic selection of the data sample to 

annotate. Their approach does not rely on the evaluation of the prediction probability but on the 

reconstruction error of a relative geological time model used as input during the training phase. 

 

The second strategy, where a human decides which data to label in order to improve the model 

performance, has been adopted with success by Tschannen et al. (2020) for the interpretation of horizons 

on seismic data. Di et al. (2018) applied this qualitative strategy as well for facies classification. One 

limitation of this approach is the possibility to introduce bias during the process of selecting which data 
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samples to label (Di et al., 2022). Indeed, some patterns might be overlooked by the interpreter during 

the visual screening of the data. In this paper, we decided to choose this approach to select the data to 

label as it does not require any additional computation cost. 
 

The catastrophic forgetting issue 

 

The main challenge when incrementally training a neural network is the forgetting of the patterns 

learned during the previous training iterations. This difficulty had been early highlighted by McCloskey 

et al. (1989). They named this phenomenon “catastrophic interference”. Some attempts had been 

proposed to overcome this problem. Robins (1995) tackled the forgetting issue by using a rehearsal 

technique which consists in retraining part of the previously learned labels as new labels are introduced. 

More recently, Goodfellow et al. (2015) found that dropout can limit the loss of previous knowledge 

when training a neural network on a new set of data. They stated that with dropout, the model size can 

be larger giving a protection to forgetting. A complementary explanation might be that the dropout can 

reduce the co-adaptation of model weights limiting the model to be too specialized to the current 

training set and giving a better capability to learn new features for the next training iteration. Kirkpatrick 

et al. (2017) introduced an approach which consists in slowing down the learning for some weights 

according to their importance related to the previously learned patterns. For the image classification 

problem, Li & Hoeim (2017) proposed a method inspired from the fine-tuning and the knowledge 

distillation (Hinton et al., 2015) methods. Firstly, they computed some pseudo-labels, called “soft 

targets”, by evaluating the trained network on the new training data, i.e. the new task to learn. Then 

they added a new branch to their network which will be specialized for the new task. They performed 

a first warm-up training of the new branch followed by a second training of the entire network. For both 

trainings, they used only the new training data. They used a regularizing term in their loss function 

which aims at penalizing the network when the predictions from the old task layers are too far from the 

soft targets. This enables the old task accuracy to be preserved to a certain extent. The limitation of this 

approach is that the network keeps growing as new tasks are learned. 

Methodology 

To limit the loss of knowledge through the successive training iterations, we followed the rehearsal 

technique proposed by Robins (1995). We tried to find the best way to combine labels used in the 

previous trainings with the new labels. To do so we varied, in the training set and the validation set, the 

proportion of labeled data from the preceding trainings with the new labelled data. In addition to that, 

we varied the learning rate (LR) as well as the patience of the earlystopping. We expected that a gradual 

decrease of the LR from one training step to the next one would allow to learn the new labels without 

dramatically degrading the previously learned labels. Our target approach being interactive, it implies 

fast trainings, hence we were interested in finding the optimal earlystopping patience value. Decreasing 

the patience value will reduce the training time to the expense of missing a better set of model 

parameters to fit the new labels. In addition, lowering the patience value might favor the older over the 

new labels’ performances.  

Three trainings have been performed successively. After each training, the model has been evaluated 

on full seismic data. To evaluate the knowledge loss at the second and third iterations, a collection of 

monitor lines has been selected. These monitor lines correspond to inlines where the delineation of the 

salt is acceptable for the previous training iteration. Consequently, the model performance must be 

preserved for these monitor lines. At the end of the second and third training iterations, the intersection 

over union (IOU) metric has been computed on their respective monitor set to have a quantitative insight 

on the level of knowledge loss. 

Our experiment has been performed on the Mississippi Valley seismic dataset, offshore northern Gulf 

of Mexico, made of 1613 inlines, 1213 crosslines and 1500 samples per trace. In total, 3.6% of the data 

(only inlines) has been labelled trough the three training steps. The number of monitor and interpreted 

inlines for each iteration is reported on Table 1. In our experiment, we performed a grid search over the 

parameters mentioned above, the associated values are listed in the Table 1.  
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Table 1 Parameters tested at the different training steps. 

Note: For a training step, whatever the previous/new labels ratio, the number of new labels in the 

training and validation sets is fixed, it is the number of old labels which varies. A 12% - 88% proportion 

for the 2nd training set means that the new interpreted labels constitute 88% of the training set and the 

remaining 12% are labels from the 1st training set. For the second training iteration, we chose to start 

from the model trained with the following set of parameters: {T. set: 34% - 66%; V. set: 12% - 88%; 

LR: 0.0003; Pat.: 5}. 

We used a 5 layers 2D U-Net with relatively small dropout values: 0.1 for shallower layers and 0.2 for 

deeper layers. The input data are seismic patches of 512x512 in size. We used a binary cross-entropy 

loss function with the Adam optimizer. The model has been trained on a NVIDIA Quadro P620 GPU. 

Results 

Our preliminary study has shown that the variation of the proportion of old labels from previous 

trainings combined with new labels in both the training and validation sets seems to have an influence 

on the trade-off old/new labels performance. For both iterations, increasing the proportion of old labels 

in the new training set improves the performance on the previously learned labels (Figure 1c & 1g) 

while not degrading the performance on the new ones (Figure 1d & 1h). To a lower extent, the 

performance on the new labels will be degraded when the proportion of old labels in the validation set 

is increased (Figure 1b & 1f). Meanwhile, the performance on the old labels seems not to be very 

sensitive to the variation of old/new labels in the validation sets (Figure 1a & 1e). 

 

 Figure 1 Impact of old/new labels proportion variation in the valid. set (resp. train set) on the monitor 

IOU (proxy for old labels performance) for (a) the 2nd and (e) 3rd training iterations (resp. (c), (g)), 

and on the new labels’ validation IOU (resp. train. set) acting as a proxy for new labels performance; 

for (b) the 2nd and (f) 3rd training iterations (resp. (d), (h)). 



 

 

 

Third EAGE Digitalization Conference and Exhibition 

2023, London, UK 

Our preliminary study has shown that reducing the learning rate has a lower impact on the performance 

on the new labels compared to its influence on the old labels. Finally, a patience value of 5 epochs gave 

an acceptable trade-off old/new labels performance with fast training times. 

For the third training, we selected the model trained with the following sets of parameters {34% - 66%; 

12% - 88%; 0.00008; 5}. The model from the first training and the selected models for the second and 

third trainings has been evaluated on the entire seismic (Figure 2). 

 

Figure 2 (a) Unlabeled inline with salt predictions from 1st iteration (black), 2nd iteration (purple), 

and 3rd iteration (yellow). (b) Crossline with prediction from the three iterations. Bold vertical lines 

are inlines interpreted during the incremental trainings.  
 

Conclusion 
 

We showed that the choice of the old/new labels ratio in the training and validations sets, as well as the 

choice of the LR and the patience can help mitigate the knowledge loss in the case of incremental 

trainings. This needs to be confirmed on different datasets. Further analysis must be performed, 

particularly on the impact of the dropout as suggested by Goodfellow et al. (2014). Additionally, it 

might be interesting to evaluate the IOU on the monitor inlines during the training for an accurate 

monitoring and building a stop criterion partially based on that metric.  
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